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Detecting Security Vulnerabilities Using a GPT Model

ABSTRACT
After the remarkable debut of ChatGPT and its related APIs, it
has been a new area of study that constantly needs to be explored.
Across diverse fields, experts are exploring ways to leverage GPT
models. Yet, based on our survey, we ascertain that further research
is required to find the potential of using the GPT models in detect-
ing security vulnerabilities. In this paper, we present our empirical
investigation into GPT-3.5’s efficacy as a vulnerability detector. We
have gathered 18,896 Java files from the 6 Java open Source Soft-
ware projects. Using this data, we tasked GPT-3.5 with identifying
hidden vulnerabilities related to CWE and CVE. To examine the
performance of it, we performed additional comparative work using
existing static analyzers. In our preliminary results, we observed
both the potential and limitations of using the GPT models to detect
vulnerabilities. Our findings show the early results discussing the
possibility of the GPT models for security issues and lead to future
research directions.
ACM Reference Format:
. 2023. Detecting Security Vulnerabilities Using a GPT Model. In Proceedings
of ACM Conference (Conference’17). ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The introduction of ChatGPT offered humanity a new way for
advancement. After ChatGPT 3.5’s astonishing debut on November
30, 2022., it impacted not only our daily lives but also our academic
pursuits. A diverse range of experts is applying ChatGPT or its
related GPT API in their respective fields of study [7, 12, 14, 22, 23].

After conducting a survey, we discovered that GPT is being em-
ployed in the fields of software assurance as well as other areas
of study [14, 22, 23]. The results suggest that there are currently
limited empirical studies in progress. The following three studies
are not directly related to ensuring security in software but, are
noticeable works that are similar to this topic. One study integrated
GPT on solving challenging mathematical problems [22]. Their re-
search centers around the integration of GPT-4 with Python to solve
complex mathematical problems. Another study was conducted in
the field of software engineering [7]. The core concept of this study
was to tackle ethical issues concerning privacy, plagiarism, and data
security. Moreover, a recent study by Xu et al. [23] suggests that
GPT still lags behind human capabilities when answering questions
across six distinct aspects: correctness, usefulness, diversity, read-
ability, clarity, and conciseness. Apart from listed academic studies,
there has been personal research that was conducted using various
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types of GPT, which are about figuring out the Myers-Briggs Type
Indicator (MBTI) of GPT [12] and its political bias [14].

Meanwhile, limited studies have employed GPT as a tool to
tackle vulnerability issues [9, 17]. Among them, one study was
conducted by Cheshkov et al. [9]. It is about the evaluation of the
ChatGPT model for vulnerability detection. They advanced their
research by prompting ChatGPT and its related APIs to identify the
top 5 vulnerabilities based on their frequency of occurrence. This
narrowed their focus to specific CWEs chosen from their predefined
dataset. Consequently, applying this approach to OSS platforms
like Github, which inherits a broad spectrum of non-predefined
CWEs, is not feasible.

We conducted an empirical study to examine the capability of the
GPT model as a vulnerability detector. The model that we used for
this experiment is gpt-3.5-turbo-16K. To broaden the scope of our
data, we have gathered recent 3,586 independent commits and
18,896 Java files from 6 different Open Source Software (OSS)
projects [5, 6, 10, 11, 20, 21]. To ensure no bias from prior training
contexts, we gathered commit history spanning from October 1,
2021, to July 18, 2023. Using these collected commits, we queried the
GPTAPIwith prepared prompts to gather responses associatedwith
vulnerability detection. Subsequently, we compared these results
with those from static analysis tools to validate their performance.

Based on our empirical study, we observed the potential of GPT
as a vulnerability detection tool. It identified a substantial number
of vulnerabilities within open-source software projects compared
to static analyzers. Additionally, it was evident there still were
limitations in the GPT model.

2 RELATEDWORK
The emergence of GPT has had a significant impact on both academia
and industry. Although there exists the issue of hallucination and
other failures [19], it is considered a useful assistant and helpful
teacher. Hence, a wide range of researchers are integrating GPT
and other Large Language Model (LLM) related frameworks into
their studies. [7, 12, 14, 22, 23]

Based on our survey, we identified several empirical works that
utilize GPT in their respective fields of study. One study used GPT
to solve challenging mathematical problems using a combination of
Python code and the GPT model [22]. Another study was done in
the field of software engineering. It mainly focused on the ethical
problems GPT might cause during the software engineering pro-
cess. The study by Xu et al. [23] evaluated the reliability of GPT’s
responses. They queried responses from the model gpt-3.5-turbo
and evaluated the responses in 6 different aspects (correctness,
usefulness, diversity, readability, clarity, and conciseness). These
studies demonstrated GPT’s capabilities as well as its limitations
across various fields.

Meanwhile, there were limited studies have been conducted
that utilized GPT as a vulnerability detector. [9, 17]. Among these,
Cheshkov et al. [9] employed gpt-3.5-turbo and GPT-3 to detect
vulnerabilities in Java-based code. They collected various codes
from the open-source software environment. They queried GPT
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with prepared prompts, focusing on the top 5 CWE vulnerabili-
ties. These top 5 CWEs were selected based on frequency in their
predefined dataset. This narrowed their focus to specific CWEs
chosen from their predefined dataset. As a result, applying this
approach to OSS platforms like Github, which inherits a wide range
of non-predefined CWEs, is impractical.

From our survey results, we discovered that research using GPT
is active in various fields. However, studies specifically related to
vulnerability detection are limited and come with their own set
of challenges. Therefore, we concluded further research is needed
to evaluate GPT’s capability to detect vulnerabilities on a broader
scale.

3 EXPERIMENTAL DESIGN
To evaluate the capability of the GPT model as a vulnerability
detector, we set the following two research questions.

• RQ1: How much potential does the GPT model have when
used as a vulnerability detector?

• RQ2: How is the accuracy of vulnerability detection in the
GPT model compared to that of traditional static analyzers?

To answer these questions, we collected recent commits from
six Java open-source projects, created prompts for the GPT model,
and analyzed its responses. The following subsections describe the
detailed process of our experiment.

3.1 Data Collection
3.1.1 Gathering Commits. To collect commits for this study, we
selected six Java open-source projects from the Apache Maven
repository [3]. Afterward, we browsed the project list, organized
by usage frequency. We reviewed the vulnerabilities of each project
as listed in the Maven repository and subsequently selected several
projects specifically known for their vulnerabilities. We prioritized
those with documented issues on GitHub to closely examine the
actual code. Ultimately, we narrowed our focus to six project repos-
itories with the most issues [5, 6, 10, 11, 20, 21].

From the chosen projects, we collected commits spanning from
October 1, 2021, to July 18, 2023. This was done to mitigate any
bias that might arise from the pre-trained data of GPT which are
collected up to September 1, 2021. As a result, we obtained a total
of 18,896 Java files from different 3,584 commits.

3.1.2 Collecting GPT Responses. We then queried the gpt-3.5-turbo
API, providing both the prompt and the code. The prompt format
when querying GPT is as follows:

Query Statement: "Can you check the following code and if
there is any CWE or CVE-related vulnerability, can you point
it out the number of CWE or CVE and describe it?" + ‘related
code’

The number of responses we gathered through this process were
16,569. The discrepancy between the number of Java files and
the amount of responses is attributed to the maximum token size
limit. We had to exclude some oversized Java files due to the limited
number of tokens that GPT API could handle. The gpt-3.5-turbo-16k
can handle up to 16k tokens which are approximately 80 KB.

From the collected responses, we filtered them for each individual
project. We excluded irrelevant results such as those stating, “There

are no specific CWE or CVE-related vulnerabilities in this code”.
We focused on the responses containing regular expressions such
as ’(CWE|CVE)-[0-9]+’. This process resulted in identifying 208
Java files that are potentially vulnerable to the GPT model.

3.2 Categorizing
With the result gathered from section 3.1.2, we manually reviewed
the code to determine if the potentially vulnerable codes were
indeed vulnerable. The task was taken collaboratively by all au-
thors ensuring a thorough double-check process. We classified the
responses into five labels: Y (Yes) | AR (Almost Right) | PR (Par-
tially Right) | WE (Wrong Explanation) | N (No)

The responses labeled as Y clearly contain vulnerable segments.
We verified this by referencing online resources such as common
vulnerability issue reports that are related to the vulnerability point.
Responses labeled as AR are considered potentially vulnerable,
mostly due to omission faults. Examples of these omission faults
include validation checks, which may pose issues within a singu-
lar file but can be mitigated within the context of method calls or
invocations. The PR label indicates responses that provide accu-
rate explanations of the vulnerabilities; however, their correlation
with the CWE-ID is not consistent. Responses labeled asWE are
responses that exhibit a consistent pattern in the response template.
Despite their assertion that they do not contain any vulnerabilities,
they provide a general term indicative of potential vulnerability
concerns, such as CWE-20: Improper Input Validation. Lastly, N
was assigned for responses of entirely incorrect code analysis or
vulnerability detection.

3.3 Comparison with Static Analyzers.
This procedure was conducted to compare the performance of GPT
against existing static analyzers in the market. The static analyzers
that we used for this procedure are SonarQube [1], Snyk [2], and
Spotbugs [4]. We selected these tools primarily for their IDE plug-
ins, which allowed us to perform static analysis immediately after
making changes to a file’s context and its reliance. [13]. Through-
out the process, changes to file contexts were necessary, as files
could undergo modifications across multiple commits. This meant
that the context might not always match the file’s latest version.
Thus, we modified the file’s context to reflect the stage at which
a potentially vulnerable commit was detected. Subsequently, we
performed static analysis on the entire project, ensuring uniform
conditions for each performance assessment.

The files that were analyzed are the 208 Java files that were
found potentially vulnerable by the GPT. Based on the provided
responses, we identified potential vulnerabilities in six Java open-
source projects. Using these findings, we compiled a table to com-
pare the results.

4 RESULT
Our findings provide empirical results that address our research
questions. In Table 1, we summarized our observations, which in-
clude the number of commits collected over the past 22 months.
We also detail the count of modified Java files and the quantity of
responses obtained through the GPT model. Additionally, the table
presents the number of files identified with potential vulnerabilities,
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Projects Commits Java Files Responses (not empty) Vulnerability(GPT) Review Static Analyzer
Y AR PR WE N

gson 117 414 414 3 1 2 0 0 0 0
pgjdbc 134 389 347 5 0 4 0 0 1 0
junit4 9 13 13 0 0 0 0 0 0 0
guava 421 4,008 2,652 3 0 3 0 0 0 0
h2database 391 2,949 2,244 21 0 7 4 2 8 1
bc-java 2,512 11,127 10,899 176 3 46 6 46 75 5
Total 3,584 18,900 16,569 208 4 62 10 48 84 6

Table 1: GPT Responses

Index Project Commit Hash : File Path Vulnerability (Detection Tool) Response

1 h2database 35839d : JakartaDbStarter.java CWE-798 (Static Analyzer) Invalid
2 bc-java e8c409 : X509LDAPCertStor CWE-798 (Static Analyzer) N/A

3 bc-java a2a9bb : GMCipherSpi.java CWE-916 (Static Analyzer)
CWE-327 (GPT) Vulnerable Legacy Code

4 bc-java 2bdb28 : DigestFactory.java CWE-916 (Static Analyzer) Invalid
5 bc-java 7274b8 : MD5Digest.java CWE-916 (Static Analyzer) Invalid
6 bc-java 68558c : Dump.java CWE-23 (Static Analyzer) Invalid / file removed
7 bc-java 529d16 : Ed25519ctxSigner.java CWE-759 (GPT) Invalid
8 gson 0d22e5 : NonNullElementWrapperList.java CWE-367 (GPT) Depends on the context

Table 2: Issue Reports and their Responses

labeled by both GPT and static analyzers.

RQ1: How much potential does the GPT model have when used
as a vulnerability detector?

Table 1 shows 76 potentially vulnerable files (Y: 4, AR: 62, PR: 10)
out of the 208 files based on our analysis. Among these 76 potential
vulnerabilities, we verified vulnerable projects specifically for the
’Y’ labeled files by checking recent commit histories or submitting
issue reports to developers of the projects. This choice was made
because we were confident that these files indeed represented se-
curity vulnerabilities, and this action was taken to validate our
findings. Among four responses that were labeled as ’Y’, we have
confirmed one response is an actual security vulnerability as it has
been fixed in a recent commit. Thus, we did not submit an issue
report for this one. For the other three responses, we reported them
to the developers of the open-source projects. Table 2 shows the
names of files from each commit, along with their associated CWE
labels, which were reported due to vulnerabilities. On the other
hand, We also observed that 132 (WE: 48, N: 84) out of 208 files
either do not contain actual vulnerabilities or have explanations
that were incorrectly matched. These observations highlight both
the limitations of the current GPT model and its potential as a tool
for detecting vulnerabilities.

RQ2: How is the accuracy of vulnerability detection in the GPT
model compared to that of traditional static analyzers?

To compare the vulnerability detection results of the GPT model
to those of static analyzers, we submitted issue reports regarding
potential vulnerabilities in the respective projects. We submitted

issue reports for the three responses labeled ‘Y’ and six vulnerability
detection results from Snyk.

Table 2 shows a total of 8 issue reports we posted and developers’
confirmation for those issues. Although the number of issues we
needed to report is 9, we submitted 8 issue reports. That is because
Snyk detected the same vulnerability issue (i.e., CWE-23) from the
two code spots in the same file. We reported these as one issue
(Index 6 in Table 2).

Among eight reports, seven issue reports were confirmed by
the developers of the open-source projects and their responses
were divided into three patterns: invalid, context-dependent, and
vulnerable-but-not-fixed. Based on their feedback, five vulnera-
bilities were invalid results since these can be either addressed
elsewhere in the project or not directly related to program execu-
tion. These responses are indexed as 1, 4, 5, 6, and 7 in Table 2. Thus,
it was determined safe to use the class files. The second response
pattern, indexed as 8, deals with its usage context and pertains to a
thread synchronization vulnerability. In their response, they refer-
enced the official project documentation, emphasizing its thread
safety. However, they could not enforce this standard on custom
user-defined implementations, implying potential security issues
in user-defined projects. In the final response pattern indexed as 3,
project contributors acknowledged the vulnerability but postponed
the removal or modification of it due to legacy constraints. This
was evident as both static analysis and the GPT model flagged this
code as vulnerable.

It is clear that there were many misclassifications among GPT’s
responses, as represented in Table 1 by the total number of ‘WE’
and ‘N’ labels. However, we also observed that the ‘Y’ labeled files

3
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differ by just one file in number between GPT and the static ana-
lyzers. Furthermore, GPT identified two vulnerable files that were
confirmed as such, whereas static analyzers found only one such
case.

5 DISCUSSION
5.1 Potentials of GPT as a vulnerability detector
As in Section 4, the responses of the GPT models presented positive
potentials. Although the dataset we used had a large probability of
being biased to be clean, GPT found four vulnerabilities. Among
these responses, two of them were either proven valid or addressed
in the later commits. One other response stated that it can be vulner-
able based on the context where it will be used. On the other hand,
the static analyzers identified six vulnerabilities, with only one
response being valid, which corresponded to the same file (Index 3
in Table 2) detected by GPT.

However, it was clear that GPT had its limits. It accused lots
of innocent victims as they had the weaknesses and vulnerabili-
ties in them. Among the 208 candidates out of 16,569 files, only
2 responses were valid, and one response was in between. The
remaining 205 files had either incorrect or overly generic explana-
tions. In particular, there were mismatches between all of the CVE
IDs and some of the CWE IDs with their corresponding explana-
tions. For instance, GPT detected a file with the CVE-2019-10218
issue, but the content was ‘CWE-288: Authentication Bypass Using
an Alternate Path or Channel [16]’. However, CVE-2019-10218 is
actually related to ’CWE-22: Improper Limitation of a Pathname to
a Restricted Directory (’Path Traversal’) [15]’. There were 19 similar
mismatched responses similar to these. Another evident limitation
of GPT’s suggestions was that some responses were overly generic
or required validation by checking the context of the code. This
limitation is caused by the fact that the GPT model cannot ana-
lyze the entire code structure. Hence, it lacks knowledge about the
specific locations where vulnerability validation takes place. These
limitations required additional effort from the developer to validate
GPT responses.

5.2 Future Work
In this study, we observed both the potential and limitations of the
GPT model to detect security vulnerabilities. To overcome the limi-
tations, we plan to explore advanced GPTAPIs that offer fine-tuning
capabilities, as discussed in recent sources [8, 18]. These developed
models will have the ability to be trained more properly. Further-
more, it will handle files excluded from this experiment due to their
size. These improvements could facilitate collaboration between
a static analyzer and GPT, enhancing their joint ability to detect
vulnerabilities. GPT can complement the static analyzer by offering
detailed explanations, while the static analyzer can complement
GPT by providing quicker results and cost-effectiveness.

6 CONCLUSION
Throughout this paper, we have demonstrated the limits and the
potential that the GPT model contains. It is evident that GPT had a
high number of misclassified vulnerabilities. As a result, it placed
a burden on developers to classify the responses. Furthermore, it
was not adequately trained, particularly in handling CVEs, since

its training data only extended up to September 1, 2021. However,
GPT model still had the potential to be a vulnerability detector.
This was demonstrated through the submission of issue reports
to the vulnerable projects. Out of the four ’Y’ labeled files, two
were either accepted or had already been addressed. We took one
step further to assess its performance. We conducted comparative
research involving static analyzers. The results revealed that static
analyzers exhibited lower accuracy in vulnerability detection. Out
of the six potential vulnerabilities, only one was accepted, which
was also detected by GPT. We anticipate an improvement in its
performance as a vulnerability detector, with the recent release of
the GPT-4 API and a fine-tunable version of GPT-3.5. We publicly
share the replication packages and results of our study.1
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